From Universal Language Model to Downstream Task: Improving RoBERTa-Based Vietnamese Hate Speech Detection

Quang Huu Pham¹ Viet-Anh Nguyen¹ Linh Bao Doan¹ Ngoc N. Tran ¹ Ta Minh Thanh²

¹R&D Department Sun-Asterisk Inc.

²Faculty of Computer Science Le Quy Don Technical University

The 12th IEEE International Conference on Knowledge and Systems Engineering

Quang et. al (Sun*)

Vietnamese Hate Speech Detection

KSE 2020 1 / 14

1 Introduction

- Motivation and objective
- Background knowledge
- 2 Methods
 - Classification architecture
 - Fine-tuning strategy
- 3 Experiments and results
 - Experiments

Quang et. al (Sun*)

- Results
- 4 Conclusion

∃ >

Introduction

- Motivation and objective
- Background knowledge

2 Methods

- Classification architecture
- Fine-tuning strategy
- 3 Experiments and results
 - Experiments

Quang et. al (Sun*)

- Results
- 4 Conclusion

KSE 2020 3 / 14

4 3 > 4 3

Motivation and objective

Motivation

- Pre-trained language models are extremely useful for downstream tasks.
- Fine-tuning a well-trained model on a task-specific dataset needs to be carefully handled.

Motivation and objective

Motivation

- Pre-trained language models are extremely useful for downstream tasks.
- Fine-tuning a well-trained model on a task-specific dataset needs to be carefully handled.

Objective

- Propose a general tuning strategy for language models on downstream tasks.
- Apply the pipeline with a RoBERTa-based (i.e. PhoBERT) architecture to solve Vietnamese Hate Speech Detection task.

KSE 2020

4/14

Background

- RoBERTa language model
 - The original by Facebook¹: BERT without NSP, trained on 160GB text.
 - Vietnamese version PhoBERT by VinAl²: Trained on 20GB texts (1GB Wikipedia, 19GB news)

< ∃ ►

< □ > < @ >

Yinhan Liu et. al. Roberta: A robustly optimized bert pretraining approach, 2019.
N.Q.Dat and N. A. Tuan. Phobert: Pre-trained language models for Vietnamese, 2020.

Vietnamese Hate Speech Detection

KSE 2020 5 / 14

Background

- RoBERTa language model
 - The original by Facebook¹: BERT without NSP, trained on 160GB text.
 - Vietnamese version PhoBERT by VinAl²: Trained on 20GB texts (1GB Wikipedia, 19GB news)
- Masked language modeling: fill-in-the-blank task

< □ > < □ > < □ > < □ > < □ > < □ >

Yinhan Liu et. al. Roberta: A robustly optimized bert pretraining approach, 2019.
N.Q.Dat and N. A. Tuan. Phobert: Pre-trained language models for Vietnamese, 2020.

Vietnamese Hate Speech Detection

KSE 2020 5 / 14

1 Introduction

- Motivation and objective
- Background knowledge
- 2 Methods
 - Classification architecture
 - Fine-tuning strategy
- 3 Experiments and results
 - Experiments

Quang et. al (Sun*)

- Results
- 4 Conclusion

A B A A B A

Classification architecture

RoBERTa-base (PhoBERT's weights) as backbone network

< ∃ >

Quang et. al (Sun*)

Vietnamese Hate Speech Detection

KSE 2020 7 / 14

Classification architecture

- RoBERTa-base (PhoBERT's weights) as backbone network
- Combination of different layer embeddings

KSE 2020 7 / 14

Classification architecture

- RoBERTa-base (PhoBERT's weights) as backbone network
- Combination of different layer embeddings
- Classification head: Multi-layer perceptron

KSE 2020 7 / 14

Fine-tuning pipeline

- MLM Tuning:
 - Randomly replace 5 tokens using PhoBERT
 - Tune the language model on training data

イロト イヨト イヨト

Quang et. al (Sun*)

(E) E| = つへの KSE 2020 8/14

Training Data

Fine-tuning pipeline

- MLM Tuning:
 - Randomly replace 5 tokens using PhoBERT
 - Tune the language model on training data
- HSD training:
 - The first epoch: Freeze transformer encoders, train MLP head with warm-up learning rate
 - The rest: Unfreeze and train all encoders with block-wise learning rates
 - Label smoothing loss

$$y'_k = y_k(1-\alpha) + \alpha/K$$

one-hot label

K classes

HSD training

1 Introduction

- Motivation and objective
- Background knowledge

2 Methods

- Classification architecture
- Fine-tuning strategy

3 Experiments and results

- Experiments
- Results

4 Conclusion

Experiments

Experiments

 Experiment with different combinations of embeddings from 12 layers.

	HATE	OFFENSIVE	CLEAN
Number of sample	709	1,022	18,614

Noise: abbreviations, emoji, special characters, foreign language, teen code, typing errors.

< □ > < 同 >

Crawled from SNS's

KSE 2020 10/14

A B A A B A

Experiments

Experiments

- Experiment with different combinations of embeddings from 12 layers.
- Investigate effectiveness of each individual and all fine-tuning techniques.

	HATE	OFFENSIVE	CLEAN
Number of sample	709	1,022	18,614

Noise: abbreviations, emoji, special characters, foreign language, teen code, typing errors.

Crawled from SNS's

KSE 2020 10/14

∃ ▶ ∢ ∃

Results

Table: Mean of Macro F1 score on Stratified K-fold with k = 10 of difference blocks

Feature blocks	Mean of F1 score
Layer 6 (only single block)	0.6854
Layer 12 (only single block)	0.6978
Layer 3-6 (4 middle blocks)	0.6855
Layer 9-12 (4 last blocks)	0.6989
Layer 1-6 (6 first blocks)	0.6905
Layer 7-12 (6 last blocks)	0.6989
Layer 1-12 (all blocks)	0.6979

Table: Mean of Macro F1 score on Stratified K-fold with k = 10 with concatenate of layers 6-12 and our training approach

Proposed training approach	Mean of F1 score
Cross entropy loss	0.6922
Label Smoothing loss	0.7005
Non warm-up learning rate	0.6989
Warm-up learning rate	0.7062
Non Fine-tune MLM	0.6989
Fine-tune MLM	0.7162
Non Block wise learning rate	0.7051
Block wise learning rate	0.7079
Combine all the methods	0.7211

KSE 2020 11 / 14

(B)

1 Introduction

- Motivation and objective
- Background knowledge

2 Methods

- Classification architecture
- Fine-tuning strategy
- 3 Experiments and results
 - Experiments

Quang et. al (Sun*)

Results

4 Conclusion

KSE 2020 12 / 14

イロト イヨト イヨト イヨト

Conclusion

- What we have done:
 - Proposed a pipeline for adapting a universal language model to downstream tasks
 - Applied the pipeline into Hate Speech Detection task, achieved top 1 on the leaderboard.

Conclusion

- What we have done:
 - Proposed a pipeline for adapting a universal language model to downstream tasks
 - Applied the pipeline into Hate Speech Detection task, achieved top 1 on the leaderboard.
- Future work:
 - Design more complex classification head
 - Try employing the model and pipeline on different languages.

KSE 2020 13 / 14

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Thank you for listening!

Quang et. al (Sun*)

Vietnamese Hate Speech Detection

KSE 2020 14 / 14