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Motivation and objective

Motivation

Pre-trained language models are extremely useful for downstream tasks.
Fine-tuning a well-trained model on a task-specific dataset needs to be
carefully handled.

Objective

Propose a general tuning strategy for language models on downstream
tasks.
Apply the pipeline with a RoBERTa-based (i.e. PhoBERT) architecture
to solve Vietnamese Hate Speech Detection task.
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Background

RoBERTa language model

The original by Facebook1: BERT
without NSP, trained on 160GB text.
Vietnamese version PhoBERT by
VinAI2: Trained on 20GB texts
(1GB Wikipedia, 19GB news)

Masked language modeling:
fill-in-the-blank task
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Methods Classification architecture

Classification architecture

RoBERTa-base (PhoBERT’s
weights) as backbone network

Combination of different layer
embeddings

Classification head: Multi-layer
perceptron
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Methods Fine-tuning strategy

Fine-tuning pipeline

MLM Tuning:

Randomly replace 5 tokens
using PhoBERT
Tune the language model on
training data

HSD training:

The first epoch: Freeze
transformer encoders, train
MLP head with warm-up
learning rate
The rest: Unfreeze and train all
encoders with block-wise
learning rates
Label smoothing loss
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Experiments

Experiment with different
combinations of embeddings
from 12 layers.

Investigate effectiveness of each
individual and all fine-tuning
techniques.

HATE OFFENSIVE CLEAN
Number of sample 709 1,022 18,614
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Results

Table: Mean of Macro F1 score on
Stratified K-fold with k = 10 of
difference blocks

Feature blocks Mean of F1 score
Layer 6 (only single block) 0.6854

Layer 12 (only single block) 0.6978
Layer 3-6 (4 middle blocks) 0.6855
Layer 9-12 (4 last blocks) 0.6989
Layer 1-6 (6 first blocks) 0.6905
Layer 7-12 (6 last blocks) 0.6989

Layer 1-12 (all blocks) 0.6979

Table: Mean of Macro F1 score on
Stratified K-fold with k = 10 with
concatenate of layers 6-12 and our
training approach

Proposed training approach Mean of F1 score
Cross entropy loss 0.6922

Label Smoothing loss 0.7005
Non warm-up learning rate 0.6989

Warm-up learning rate 0.7062
Non Fine-tune MLM 0.6989

Fine-tune MLM 0.7162
Non Block wise learning rate 0.7051

Block wise learning rate 0.7079
Combine all the methods 0.7211
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Conclusion

Conclusion

What we have done:

Proposed a pipeline for adapting a universal language model to
downstream tasks
Applied the pipeline into Hate Speech Detection task, achieved top 1
on the leaderboard.

Future work:

Design more complex classification head
Try employing the model and pipeline on different languages.
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Thank you for listening!
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