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Understanding GAN’s latent space

Understanding GAN’s latent space

2 branches of questions

Are scalar variables of GAN’s latent vector entangled? If they are,
would it be beneficial to disentangle them? If yes, how to do that?
And what feature of an image that those scalar variables capture?

How to manipulate GAN’s latent space to observe desired generated
images?

In our paper, we focus on the 2nd questions for facial images
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Existing methods. Pros and Cons Linear interpolation

Linear interpolation

Interpolate between 2 points
in latent space (corresponding
to 2 pictures ) to observe the
change in interpolated images.

Pros: Easy
implementation

Cons:

Does not make any
implication about
GAN’s latent scalar
variables.
Can not manipulate
GAN’s latent space as
desire
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Existing methods. Pros and Cons Vector Arithmetic

Vector Arithmetic

Add or subtract vectors in la-
tent space to get desired gen-
erated images

Pros:

Easy implementation
Produce desired
generated images

Cons:

Hand-select generated
images with desired
characteristics used
for manipulation
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Existing methods. Pros and Cons InfoGAN

InfoGAN

Used another easily, semantically
understandable hidden variable in
a lower dimension to encode the
latent variables

Pros:

Unsupervised learning
(saving human effort)

Cons:

Require training a new
GAN model (difficult)
Cannot know in advance
the characteristics
encoded in hidden
variables
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Our Method Idea

Idea

Create a linear mapping from
GAN’s latent space to the pre-
defined, semantically mean-
ingful characteristic space.

y = zW> + b, (1)
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Our Method Image manipulation and obstacles

Image manipulation and obstacles

Image manipulation

z ′ = z + αwi

y ′ = z ′W> + b

⇔ y + ∆y = (z + αwi )W
> + b

⇔ y + ∆y = (zW> + b) + αwiW
>

⇔


∆y1

∆y2
...

∆yn

 = αwi


∆w>

1

∆w>
2

...
∆w>

n

 =


∆αw>

1 wi

∆αw>
2 wi

...
∆αw>

n wi


⇒ ∆yi > 0
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Our Method Image manipulation and obstacles

Image manipulation and obstacles

Obstacle: if wi is similar to other coefficients, changing z to z ′ also
changes cause changes to other attributes
Overcome: Orthogonality Regularization

J(w) = MSE(fw (z), y) + λ‖w>w − I‖
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Conclusion

Contribution summary

Supervised method to explicitly map the latent space with a
meaningfully pre-defined semantic space with advantages compared
to existing methods:

Ultilize pre-trained GAN model, easy to implement
Allow to change the intensity of images’ characteristic

More robust image manipulation with orthogonality regularization
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Thank you for listening!
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