Efficient Low-Latency Dynamic Licensing for Deep Neural Network Deployment on Edge Devices

Toan Pham Van¹ Hoang Pham Minh¹ Ngoc N. Tran¹ Tam Nguyen Minh ¹ Ta Minh Thanh²

¹R&D Department Sun-Asterisk Inc.

²Faculty of Computer Science Le Quy Don Technical University

The 3rd International Conference on Computational Intelligence and Intelligent Systems (CIIS 2020)

Table of Contents

- Introduction
 - Motivations
 - Preliminaries
- Our system proposal
 - Our architecture
 - Model Compression
 - Weight Licensing
- 3 Features of our method
 - Efficient Deployment
 - Version Management
 - Low-Latency Update
 - Dynamic and Static Licensing
- Experiments
 - System setup
 - Results

Table of Contents

- Introduction
 - Motivations
 - Preliminaries
- Our system proposal
 - Our architecture
 - Model Compression
 - Weight Licensing
- 3 Features of our method
 - Efficient Deployment
 - Version Management
 - Low-Latency Update
 - Dynamic and Static Licensing
- 4 Experiments
 - System setup
 - Results

Commercial AI applications are becoming mainstream.

■ Traditional infrastructures will not be able to keep up.

- Traditional infrastructures will not be able to keep up.
 - Complete server-side solutions require unrealistic server scaling.

Commercial AI applications are becoming mainstream.

- Traditional infrastructures will not be able to keep up.
 - Complete server-side solutions require unrealistic server scaling.
 - Network bandwidth will be severely strained.

4 / 18

- Traditional infrastructures will not be able to keep up.
 - Complete server-side solutions require unrealistic server scaling.
 - Network bandwidth will be severely strained.
 - \rightarrow Push workload to the edge!

- Traditional infrastructures will not be able to keep up.
 - Complete server-side solutions require unrealistic server scaling.
 - Network bandwidth will be severely strained.
 - \rightarrow Push workload to the edge!
- Edge devices' computational power is limited.

- Traditional infrastructures will not be able to keep up.
 - Complete server-side solutions require unrealistic server scaling.
 - Network bandwidth will be severely strained.
 - \rightarrow Push workload to the edge!
- Edge devices' computational power is limited.
 - → Need model optimization!

- Traditional infrastructures will not be able to keep up.
 - Complete server-side solutions require unrealistic server scaling.
 - Network bandwidth will be severely strained.
 - \rightarrow Push workload to the edge!
- Edge devices' computational power is limited.
 - → Need model optimization!
- Commercial Al apps requires versioning and licensing.

- Traditional infrastructures will not be able to keep up.
 - Complete server-side solutions require unrealistic server scaling.
 - Network bandwidth will be severely strained.
 - \rightarrow Push workload to the edge!
- Edge devices' computational power is limited.
 - → Need model optimization!
- Commercial AI apps requires versioning and licensing.
 - \rightarrow We can extend our system to work with that.

Cloud-based AI vs Edge-based AI

Figure: Cloud-based DNN (left) vs Edge-based DNN architecture (right)

Deep Neural Networks

Basically a complex composition of simpler functions

- Basically a complex composition of simpler functions
 - Called "deep" because it has many layers

- Basically a complex composition of simpler functions
 - Called "deep" because it has many layers
 - Represented by (lots and) lots of numbers called parameters/weights

- Basically a complex composition of simpler functions
 - Called "deep" because it has many layers
 - Represented by (lots and) lots of numbers called parameters/weights
 - An extreme example: GPT-3 has 175 billion parameters!

- Basically a complex composition of simpler functions
 - Called "deep" because it has many layers
 - Represented by (lots and) lots of numbers called parameters/weights
 - An extreme example: GPT-3 has 175 billion parameters!
 - Various optimizations needed

- Basically a complex composition of simpler functions
 - Called "deep" because it has many layers
 - Represented by (lots and) lots of numbers called parameters/weights
 - An extreme example: GPT-3 has 175 **billion** parameters!
 - Various optimizations needed
- Model compression techniques

- Basically a complex composition of simpler functions
 - Called "deep" because it has many layers
 - Represented by (lots and) lots of numbers called parameters/weights
 - An extreme example: GPT-3 has 175 billion parameters!
 - Various optimizations needed
- Model compression techniques
 - Model pruning

Deep Neural Networks

- Basically a complex composition of simpler functions
 - Called "deep" because it has many layers
 - Represented by (lots and) lots of numbers called parameters/weights
 - An extreme example: GPT-3 has 175 billion parameters!
 - Various optimizations needed
- Model compression techniques
 - Model pruning
 - Quantization

6/18

- Basically a complex composition of simpler functions
 - Called "deep" because it has many layers
 - Represented by (lots and) lots of numbers called parameters/weights
 - An extreme example: GPT-3 has 175 billion parameters!
 - Various optimizations needed
- Model compression techniques
 - Model pruning
 - Quantization
 - Weight sharing

Database and Query

Database

- Database
 - Relational database

- Database
 - Relational database
- Query

- Database
 - Relational database
- Query
 - RESTful API

- Database
 - Relational database
- Query
 - RESTful API
 - GraphQL

Table of Contents

- 1 Introduction
 - Motivations
 - Preliminaries
- Our system proposal
 - Our architecture
 - Model Compression
 - Weight Licensing
- 3 Features of our method
 - Efficient Deployment
 - Version Management
 - Low-Latency Update
 - Dynamic and Static Licensing
- 4 Experiments
 - System setup
 - Results

• We split the traditional unified cloud into a training server and a weight storage server.

Figure: Our architecture with weight storage in database

9/18

Toan et. al (Sun*) Edge Al Dynamic Licensing CIIS 2020

Toan et. al (Sun*)

- We split the traditional unified cloud into a training server and a weight storage server.
- Weight database is designed for extensive versioning.

CIIS 2020

10 / 18

- We split the traditional unified cloud into a training server and a weight storage server.
- Weight database is designed for extensive versioning.
 - Store each model version with their last update time

- We split the traditional unified cloud into a training server and a weight storage server.
- Weight database is designed for extensive versioning.
 - Store each model version with their last update time
 - Also store individual weights with their last update time

- We split the traditional unified cloud into a training server and a weight storage server.
- Weight database is designed for extensive versioning.
 - Store each model version with their last update time
 - Also store individual weights with their last update time
 - → Allows for model updates only when needed, whichever part needed.

Model Compression

Figure: Model compression pipeline

Weight Licensing

```
Algorithm 1 Pruning model based on accuracy
```

```
divide weight range into k smaller equal-sized intervals
initialize a list of cut-off intervals
for all intervals do
  for all model's layers do
     cut off weights that have values in that interval
     append interval into cut-off interval list
     if accuracy of pruned model is close to the target then
       break the pruning process
     end if
  end for
end for
return uncut interval lists
```


Table of Contents

- Introduction
 - Motivations
 - Preliminaries
- Our system proposal
 - Our architecture
 - Model Compression
 - Weight Licensing
- 3 Features of our method
 - Efficient Deployment
 - Version Management
 - Low-Latency Update
 - Dynamic and Static Licensing
- 4 Experiments
 - System setup
 - Results

■ Efficient Deployment

- Efficient Deployment
- Version Management

- Efficient Deployment
- Version Management
- Low-Latency Update

- Efficient Deployment
- Version Management
- Low-Latency Update
- Dynamic and Static Licensing

14 / 18

Table of Contents

- Introduction
 - Motivations
 - Preliminaries
- Our system proposal
 - Our architecture
 - Model Compression
 - Weight Licensing
- 3 Features of our method
 - Efficient Deployment
 - Version Management
 - Low-Latency Update
 - Dynamic and Static Licensing
- Experiments
 - System setup
 - Results

System setup

- Django Framework
- Keras/TensorFlow
- PostgreSQL
- Hasura
- Docker

Results

Table: The cost of memory storage

No. of params	Full params	Pruning 80%	+ Quantization
109386	13MB	2.92MB	2.34MB
101770	12MB	2.65MB	2.09MB

Thank you for listening!

18 / 18