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m Traditional infrastructures will not be able to keep up.
m Complete server-side solutions require unrealistic server scaling.
m Network bandwidth will be severely strained.
— Push workload to the edge!

m Edge devices' computational power is limited.
— Need model optimization!

m Commercial Al apps requires versioning and licensing.
— We can extend our system to work with that.
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Cloud-based Al vs Edge-based Al
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Figure: Cloud-based DNN (left) vs Edge-based DNN architecture (right)
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Our architecture

m We split the traditional unified cloud into a training server and a
weight storage server.

m Weight database is designed for extensive versioning.

m Store each model version with their last update time
m Also store individual weights with their last update time

— Allows for model updates only when needed, whichever part
needed.
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Figure: Model compression pipeline
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Weight Licensing
Weight Licensing

Algorithm 1 Pruning model based on accuracy
divide weight range into k smaller equal-sized intervals
initialize a list of cut-off intervals
for all intervals do
for all model’s layers do
cut off weights that have values in that interval
append interval into cut-off interval list
if accuracy of pruned model is close to the target then
break the pruning process
end if
end for
end for
return uncut interval lists
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System setup

Django Framework
Keras/TensorFlow
PostgreSQL

Hasura

Docker
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Results

No. of params

Table: The cost of memory storage

Full params

Pruning 80%

+ Quantization

109386

13MB

2.92MB

2.34MB

101770
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12MB

2.6MB
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Thank you for listening!
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