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Motivation

The collections of digital music is growing rapidly.

m We need an automatic audio metadata tagging system.

Sun*

Toan et. al (Sun*) Vocal Classification SolCT 2019 4/19



The overalls Motivation

Motivation

The collections of digital music is growing rapidly.
m We need an automatic audio metadata tagging system.

m Specifically, we are tackling the singer problem.

Sun*

Toan et. al (Sun*) Vocal Classification SolCT 2019 4/19



LLUEROEES  Technologies

Technologies

m Traditionally, the task is solved with classical models.
for e.g., SVM, k-NN, Naive Bayes

Sun*

Toan et. al (Sun*) Vocal Classification SolCT 2019 5/19



LLUEROEES  Technologies

Technologies

m Traditionally, the task is solved with classical models.
for e.g., SVM, k-NN, Naive Bayes
m We will be using deep learning.
New technologies give SotA results.

Sun*

Toan et. al (Sun*) Vocal Classification SolCT 2019 5/19



LLUEROEES  Technologies

Technologies

m Traditionally, the task is solved with classical models.
for e.g., SVM, k-NN, Naive Bayes
m We will be using deep learning.
New technologies give SotA results.

m For audio features, we opted to use the current de facto standard.

Sun*

Toan et. al (Sun*) Vocal Classification SolCT 2019 5/19



LLUEROEES  Technologies

Technologies

m Traditionally, the task is solved with classical models.
for e.g., SVM, k-NN, Naive Bayes
m We will be using deep learning.
New technologies give SotA results.

m For audio features, we opted to use the current de facto standard.
m Classical features

Sun*

Toan et. al (Sun*) Vocal Classification SolCT 2019 5/19



LLUEROEES  Technologies

Technologies

m Traditionally, the task is solved with classical models.
for e.g., SVM, k-NN, Naive Bayes
m We will be using deep learning.
New technologies give SotA results.
m For audio features, we opted to use the current de facto standard.
m Classical features
® Formant-based

Sun*

Toan et. al (Sun*) Vocal Classification SolCT 2019 5/19



LLUEROEES  Technologies

Technologies

m Traditionally, the task is solved with classical models.
for e.g., SVM, k-NN, Naive Bayes
m We will be using deep learning.
New technologies give SotA results.
m For audio features, we opted to use the current de facto standard.
m Classical features

m Formant-based
m Frequency response

Sun*

Toan et. al (Sun*) Vocal Classification SolCT 2019 5/19



LLUEROEES  Technologies

Technologies

m Traditionally, the task is solved with classical models.
for e.g., SVM, k-NN, Naive Bayes
m We will be using deep learning.
New technologies give SotA results.
m For audio features, we opted to use the current de facto standard.
m Classical features

m Formant-based
m Frequency response
m Hidden Markov Model

Sun*

Toan et. al (Sun*) Vocal Classification SolCT 2019 5/19



The overalls Technologies

Technologies

m Traditionally, the task is solved with classical models.
for e.g., SVM, k-NN, Naive Bayes
m We will be using deep learning.
New technologies give SotA results.
m For audio features, we opted to use the current de facto standard.
m Classical features

m Formant-based
m Frequency response
m Hidden Markov Model

m Current standard

Sun*

Toan et. al (Sun*) Vocal Classification SolCT 2019 5/19



The overalls Technologies

Technologies

m Traditionally, the task is solved with classical models.
for e.g., SVM, k-NN, Naive Bayes
m We will be using deep learning.
New technologies give SotA results.
m For audio features, we opted to use the current de facto standard.
m Classical features

m Formant-based
m Frequency response
m Hidden Markov Model

m Current standard
m Short-Time Fourier Transform (STFT)

Sun*

Toan et. al (Sun*) Vocal Classification SolCT 2019 5/19



The overalls Technologies

Technologies

m Traditionally, the task is solved with classical models.
for e.g., SVM, k-NN, Naive Bayes
m We will be using deep learning.
New technologies give SotA results.
m For audio features, we opted to use the current de facto standard.
m Classical features

m Formant-based
m Frequency response
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m Current standard

m Short-Time Fourier Transform (STFT)
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Model visualization
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Vocal Segmentation

We use Convolutional Neural Network on the audio spectrogram.

Feature Feature Feature Feature Hidden Hidden
Inputs maps maps maps maps units units Outputs
1@50x40 128@41x31 128@9x7 32@5x3 32@3x2 128 128 2
= %
Fully Fully
Convolution Max-pooling Convolution Max-pooling Flatten connected connected
10x10 kernel 5x5 kernel 5x5 kernel 2x2 kernel Dropout 0.75 Dropout 0.5
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Vocal Separation

m The model is a derivative of . . .
U-Net
Input spectrogram

GRU GRU

Output spectrogram
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Vocal Separation

Input spectrogram

m The model is a derivative of -_ . . ot
U-Net ) )

m Skip connections are passed oRU oRU
through GRU first Ouputspectrogram ‘
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spectrograms.
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Vocal Classification

Very standard audio classification settings:
m 13 MFCCs with 26 filter bands
m 3 stacked bidirectional LSTMs

m Softmax loss
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RGNS Vocal Segmentation

Vocal Segmentation

Table: Vocal and non-vocal segmentation result

Song genre | CNN Precision CNN + Viterbi Precision

Vocal Non Mean | Vocal Non Mean

vocal vocal
Country 91.30 | 97.20 | 94.25 | 97.82 | 99.64 | 98.73
Balad 02.85 | 94.24 | 93.55 | 98.65 | 99.86 | 99.26
Bolero 0432 | 90.24 | 92.28 | 96.30 | 98.12 | 97.21
Rock 88.23 | 97.15 | 90.69 | 90.64 | 90.67 | 97.10
Sun*
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Vocal Separation

Table: The result of vocal separation

DSD100 | MUSDB18
GRU Skip connection 5.92 5.84
LSTM Skip connection | 5.82 5.78
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Vocal Classification Dataset

Distribution of the dataset:

Number of songs vs. Snger
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LRSI Vocal Classification

Vocal Classification Result

Table: The result of vocal classification with two audio signal

Mean precision | Mean recall | Mean F1 score
Raw signal 85.4 82.6 83.96
Separated signal | 93.94 91.78 92.84
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The afterthoughts

Future works

m Comparisons to be done

m Improvements to be made
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Thank you for listening!

Toan et. al (Sun*) Vocal Classification SolCT 2019 19/19



	The overalls
	Motivation
	Technologies
	Our model

	The specifics
	Vocal Segmentation
	Vocal Separation
	Vocal Classification

	The experiments
	Vocal Segmentation
	Vocal Separation
	Vocal Classification

	The afterthoughts
	Appendix

