

Multiple Perturbation Attack: Attack Pixelwise Under Mixed &p-norms For Better Adversarial Performance

Ngoc N. Tran, Anh Bui, Dinh Phung, Trung Le

VinAI Research, Hanoi, Vietnam

INTRODUCTION

- Existing Lp attacks have compromises, where L1 is strong but visible, L2 is invisible yet weak, and L∞ is a balanced tradeoff between performance and visual quality
- We can combine these different attacks by selecting the perturbations per pixel to leverage the strong suit of each to create a better adversarial attack
- Since this attack is multi-normed, it works well against novel multinorm defenses, that simultaneously guard against adversaries under different Lp norms.

ALGORITHM

- Attack different Lp norms to obtain different perturbations
- Select the best perturbations per-pixel by optimizing a low-temperature softmax

mixing coefficients, then use a hardmax at the end

• Use a custom per-pixel projection operator to ensure visual quality

```
Algorithm 1: Combining adversarial perturbations under multiple imperceptibility criteria, with custom mixed pro-
jection operation.
```

```
Input: Adversarial image \mathbf{x}_{adv} \in \mathbb{R}^d, clean image \mathbf{x} \in \mathbb{R}^d, set of norms \mathcal{P}, mixing weights \mathbf{c} \in \mathbb{R}^{d \times |\mathcal{P}|}, maximum budgets \{\epsilon_p | p \in \mathcal{P}\}

Output: Projected adversarial image \mathbf{x}_{adv} \in \mathbb{R}^d

for p \in \mathcal{P} do

| // \text{ Get indices where norm-p perturbation will be used}

S_p \leftarrow \{i | i \in 1..d, \forall q \in \mathcal{P} : \mathbf{c}_p^i \ge \mathbf{c}_q^i\};
```

HYPERPARAMETER SELECTION

- We reuse the mixing weights after each iterations
- Softmax temperature is set to 0.01
- 17 attack iterations yield the best result

// Add perturbation for each norm $\mathbf{x}_{adv}[S_p] \leftarrow \mathbf{x}_{adv}[S_p] + \nabla_p[S_p];$ // Project each sub-image to their respective norm as in [14] $\mathbf{x}_{adv}[S_p] \leftarrow \operatorname{Proj}(\mathbf{x}_{adv}[S_p], p, \epsilon_p);$

end

return $\mathbf{x}_{\mathrm{adv}}$

Algorithm 2: Multiple Perturbation Attack (MPA) Algorithm.

Input: Differentiable classifier function f, clean image $\mathbf{x} \in \mathbb{R}^d$, clean label y, number of iterations n, number of mixing coefficient optimization iterations n', set of norms $\mathcal{P} = \{1, 2, \infty\}$, maximum budgets $\{\epsilon_p | p \in \mathcal{P}\}$, step sizes $\{\delta_p | p \in \mathcal{P}\}$, coefficient step size δ_c , softmax temperature t **Output:** Adversarial image $\mathbf{x}_{adv} \in \mathbb{R}^d$ Initialize $\mathbf{x}_{adv} \leftarrow \mathbf{x}$; Initialize $\mathbf{c} \in \mathbb{R}^{d \times |\mathcal{P}|}$; for i = 1..n do $\nabla \leftarrow \frac{\partial \mathcal{L}\left(f(\mathbf{x}_{\mathrm{adv}}), y\right)}{\partial \mathcal{L}\left(f(\mathbf{x}_{\mathrm{adv}}), y\right)}$. $\partial \mathbf{x}_{\mathrm{adv}}$ for $p \in \mathcal{P}$ do // Follow the steepest ascending direction as described in [14] $\nabla_p \leftarrow \text{NormalizedSteepestAscent}(\nabla, p, \delta_p);$ end for j = 1..n' do // Use σ = softmax to choose which gradient to be used per pixel $\frac{\partial \mathcal{L}(f\left(\mathbf{x}_{\mathrm{adv}} + (\sigma(\mathbf{c}/\tau) \odot \begin{bmatrix} \nabla_{p_1} & \dots & \nabla_{p_{|\mathcal{P}|}} \end{bmatrix}^\top) \mathbb{1}^{|\mathcal{P}|}\right), y)}{\partial \mathbf{c}}$ $\mathbf{c} \leftarrow \mathbf{c} + \delta_c$ end // Use hard decision to choose gradient, then custom project

attack hyperparameters.

EXPERIMENTAL RESULTS

We compare our method with standard PGD and AutoAttack ensemble.

- For ImageNet, our method outperforms other attacks significantly
- For CIFAR, we outperform all other attacks except AA-L1, while not degrading image quality obviously.
- For multinorm defenses (Maini *et. al*), our attack also yield noticeably lower robust accuracy.

Table 1. Robust accuracy for adversarial-trained models under different attacks on ImageNet (lower is better)

// Stop early if attack succeeds

 $\mathbf{x}_{adv} \leftarrow Combine(\mathbf{x}_{adv}, \mathbf{x}_0, \mathcal{P}, \mathbf{c}, \{\nabla_p | p \in \mathcal{P}\});$

| **return** \mathbf{x}_{adv}

if $f(\mathbf{x}_{adv}) \neq \mathbf{y}$ then

end

end

return \mathbf{x}_{adv}

DISCUSSION

- Intuition behind strength vs. visual quality tradeoff of AutoAttack: L1 perturbation is sensitive to *target* class; L2 is sensitive to the *source* class; L ∞ is just random noise.
- By selecting the best perturbation per-pixel, we can harness the best of all worlds
- Our method tradeoff is in running time, since we have to backprop at every iteration.
- For offensive security, MPA may hold ethical implications. Regardless, we hope that

our research will to more robust defenses against stronger and diverse attacks.

Model	Clean	Project	ed Gradien	t Descent		MPA		
		$PGD-\ell_1$	PGD- ℓ_2	PGD- ℓ_∞	AA- ℓ_1	AA- ℓ_2	AA- ℓ_{∞}	
Debenedetti et. al, 2022 [7]	79.98%	77.96%	78.78%	69.02%	71.32%	77.38%	55.40%	53.46%
Salman et. al, 2020 [17]	74.82%	69.64%	72.68%	62.72%	50.64%	69.66%	46.96%	39.36%
Engstrom et. al, 2019 [8]	69.96%	65.28%	67.98%	55.90%	44.36%	65.00%	37.90%	31.70%
Table 2. Robust accurac	y for adver Clean	sarial-traine Projecte	ed models un ed Gradient	der different Descent	attacks on	tter).		
Widder		PGD- ℓ_1	PGD- ℓ_2	PGD- ℓ_∞	$AA-\ell_1$	AA- ℓ_2	AA- ℓ_{∞}	1011 / 1
Rebuffi et. al, 2021 [16]	92.9%	41.2%	74.9%	72.1%	10.7%	68.8%	67.3%	20.7%
Gowal et. al, 2021 [11]	89.5%	39.8%	71.3%	70.8%	8.6%	64.1%	67.6%	21.3%
Gowal et. al, 2020 [10]	90.7%	39.9%	73.1%	70.7%	7.1%	66.6%	67.0%	20.7%
Maini et. al, 2020 [14]	83.5%	62.8%	68.4%	49.4%	49.0%	65.9%	44.1%	26.0%

Table 4. Robust accuracy for adversarial-trained models under different attacks on CIFAR-100 (lower is better).

Model	Clean	Projected Gradient Descent			AutoAttack			MPA
		$PGD-\ell_1$	PGD- ℓ_2	PGD- ℓ_∞	AA- ℓ_1	AA- ℓ_2	AA- ℓ_∞	
Gowal et. al, 2020 [10]	69.3%	16.7%	45.8%	41.1%	4.9%	39.5%	35.7%	10.3%
Debenedetti et. al, 2022 [7]	70.1%	27.8%	51.6%	39.4%	11.9%	46.0%	35.1%	14.1%
Rebuffi et. al, 2021 [16]	62.3%	20.3%	43.7%	38.4%	7.3%	39.1%	34.3%	10.8%
Maini et. al, 2020 [14]	56.6%	38.9%	42.1%	25.8%	27.4%	39.0%	22.2%	14.0%