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e Existing Lp attacks have compromises, where L1 is strong but visible, L2 is invisible yet weak, and Lo is a balanced tradeoff between performance and visual quality

e We can combine these different attacks by selecting the perturbations per pixel to leverage the strong suit of each to create a better adversarial attack

e Since this attack is multi-normed, it works well against novel multinorm defenses, that simultaneously guard against adversaries under different Lp norms.

MPA
4=
= e — - d
s
-I
-
J 1
0 20 0 20 0 20

~

/

Clean PGD /4 PGD /5 AutoAttack /; AutoAttack /5 AutoAttack /.
. . . .
0 20 0 20 0 20
\ Class: bird Class: deer Class: bird Class: bird Class: bird Class: bird Class: bird
m \ HYPERPARAMETER SELECTION
Attack different Lp norms to obtain different perturbations e We reuse the mixing weights after each iterations
. : o L ) .
Select the best perturbations per-pixel by optimizing a low-temperature softmax e Softmax temperature is set to 0.01
mixing coefficients, then use a hardmax at the end e 17 attack iterations yield the best result
e Use a custom per-pixel projection operator to ensure visual quality
— . : — — — ; 0607 — MPA-Reuse-1
Algorithm 1: Combining adversarial perturbations under multiple imperceptibility criteria, with custom mixed pro- MPA-Reuse-0.1
jection operation. 0554  h o —— MPA-Reuse-0.01
Input: Adversarial image x,4, € R?, clean image x € R?, set of norms P, mixing weights ¢ € R?*/”!, maximum S :Ei'::"'m'ﬂlﬂm
..... - “EI”_
budgets {¢,|p € P} 0.507 MPA-Renew-0.1
Output: Projected adversarial image x4, € R .E‘ _____ MPA-Renew-0.01
for p € P do 5 0451 T . el e MPA-Renew-0.001
// Get indices wherg norm-p perturbation will be used -
Sp—{iliel.d,Vge P:c, = c,}; 8 p40-
2 0
// Add perturbation for each norm 2
Kadv [Sp] — Kadv [Sp] -+ vp [Lgp]a 0.35
// Project each sub-image to their respective norm as in [14]
Xadwv [SP] — Prﬂj{xﬂd‘f [SF]J D, EP}; 0,30 -
end
return x.,4. 0.25 -
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Algorithm 2: Multiple Perturbation Attack (MPA) Algorithm.

Input: Differentiable classifier function f, clean image x € R, clean label 3, number of iterations n, number of
mixing coefficient optimization iterations n’, set of norms P = {1, 2, oo}, maximum budgets {¢,|p € P},
step sizes {d,|p € P}, coefficient step size d.., softmax temperature ¢

Output: Adversarial image x,.4, € R?
Initialize x4, + X;

Initialize ¢ € B>/

fori =

V 4

1.ndo

L [:f(xadv:]f y} .

for

for

end
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p € Pdo
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// Follow the steepest ascending direction as described in [14]

V, + NormalizedSteepestAscent(V, p,d,);
end

j=1..n"do
// Use o =

softmax to choose which gradient to be used per pixel

AL(f (xﬂdv + (o(c/T) © [V,

Vpn] NP0

c — c+ 9,

end
// Use hard decision to choose gradient,
Xadv — Combine(Xaav, X0, P, ¢, {V,|p € P});

if f(xaq,) # y then
// Stop early if attack succeeds

return x4,

end

return x.. 4.

de
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e Intuition behind strength vs. visual quality tradeoff of AutoAttack: L1 perturbation is

sensitive to target class; L2 is sensitive to the source class; Loo is just random noise.

e By selecting the best perturbation per-pixe

e Our method tradeoff is in running time, since we have to backprop at every iteration.

~we can harness the best of all worlds

e For offensive security, MPA may hold ethical implications. Regardless, we hope that

our research will to more robust defenses against stronger and diverse attacks.
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Figure 2. Robust accuracy of models under MPA across different
attack hyperparameters.
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EXPERIMENTAL RESULTS

We compare our method with standard PGD and AutoAttack ensemble.

e For ImageNet, our method outperforms other attacks significantly

e For CIFAR, we outperform all other attacks except AA-L1, while not

degrading image quality obviously.
e For multinorm defenses (Maini et. al), our attack also yield

noticeably lower robust accuracy.

Table 1. Robust accuracy for adversarial-trained models under different attacks on ImageNet (lower is better)

Model Clean Projected Gradient Descent AutoAttack MPA
PGD-¢; PGD-f, PGD-f, AA-[ AA-I;  AA-f
Debenedetti et. al, 2022[7] 79.98% 77.96% 78.78%  69.02% 71.32% 77.38% 5540% 53.46%
Salman et. al, 2020 [1 7] T4.82% 69.64% T72.68% 62.72% 50.64% 69.66% 46.96% 39.36%
Engstrom er. al, 2019 [5]  69.96% 65.28% 67.98% 5590% 44.36% 65.009% 37.90% 31.70%
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Table 2. Robust accuracy for adversarial-trained models under different attacks on CIFAR-10 (lower is better).

Model Clean Projected Gradient Descent AutoAttack MPA

PGD-¢y PGD-f; PGD-f,, AA-f; AA-f5 AA-f
Rebuffi et. al, 2021 [16] 929% 41.2% 74.9% 72.1% 10.7% 68.8% 673% 20.7%
Gowal et. al, 2021 [11] 89.5%  39.8% 71.3% 70.8% 8.6% 064.1% 67.6% 21.3%
Gowal et. al, 2020 [10]  90.7%  39.9% 73.1% 70.7% 171% 66.6% 67.0% 20.7%
Maini et. al, 2020 [14] 83.5% 62.8% 68.4% 49 4% 490% 659% 441% 26.0%

Table 4. Robust accuracy for adversarial-trained models under different attacks on CIFAR-100 (lower is better).

Model Clean Projected Gradient Descent AutoAttack MPA

PGD-¢; PGD-f; PGD-f,, AA-f; AA-f5 AA-[
Gowal et. al, 2020 [10] 69.3% 16.7% 45.8% 41.1% 49% 395% 35.7% 10.3%
Debenedetti et. al, 2022 [7] 70.1%  27.8% 51.6% 394% 119% 46.0% 35.1% 14.1%
Rebuffi et. al, 2021 [16] 62.3%  20.3% 43.7% 38.4% 73% 39.1% 343% 10.8%
Maini et. al, 2020 [ 14} 56.6%  38.9% 42.1% 25.8% 274% 39.0% 222% 14.0%
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