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Introduction

We propose Stochastic Multiple Target Sampling Gradient Descent (MT-SGD),
which enables us to sample from multiple unnormalized target distributions. In
summary, we make the following contributions in this work:

• Propose a principled framework that incorporates the power of Stein Variational
Gradient Descent into multi-objective optimization. Concretely, we derive the
formulation that extends the original work and allows sampling from multiple
unnormalize distributions.

• Demonstrate our algorithm is readily applicable in the context of multi-task learn-
ing. The benefits of MT-SGD are twofold: i) the trained network is optimal, which
could not be improved in any task without diminishing another, and ii) there is no
need for predefined preference vectors as in previous works, MT-SGD implicitly
learns diverse models universally optimizing for all tasks.

• Conduct comprehensive experiments to verify the behaviors of MT-SGD and
demonstrate the superiority of MT-SGD to the baselines in a Bayesian setting,
with higher ensemble performances and significantly lower calibration errors.

Multi-Target Sampling Gradient Descent

Given a set of target distributions p1:K (θ) := {p1(θ), . . . , pK(θ)} with parameter
θ ∈ Rd, we aim to find the optimal distribution q∗ ∈ Q that minimizes a vector-
valued objective function whose k-th component is DKL(q∥pk):

min
q∈Q

[DKL (q∥p1) , ..., DKL (q∥pK)] , (1)

Let us denote Hk by the Reproducing Kernel Hilbert Space (RKHS) associated
with a positive semi-definite (p.s.d.) kernel k, and Hd

k by the d-dimensional vector
function:

f = [f1, . . . , fd], (fi ∈ Hk).

Inspired by SVGD, at each step, assume that q is the current obtained distribution
and the goal is to learn a transformation T = id + ϵϕ so that q[T ] = T#q moves
closer to p1:K simultaneously:

min
ϕ

[
DKL

(
q[T ]∥p1

)
, ..., DKL

(
q[T ]∥pK

)]
. (2)

For each target distribution pi, the steepest descent direction is ϕ∗i = ψi, where
ψi (·) = Eθ∼q [k (θ, ·)∇θ log pi (θ) +∇θk (θ.·)] and ⟨·, ·⟩Hd

k
is the dot product in the

RKHS. The KL divergence of interest DKL

(
q[T ]∥pi

)
thus gets decreased roughly

by −ϵ ∥ϕ∗i∥
2
Hd
k

toward the target distribution pi. The key steps of our MT-SGD are
summarized in Algorithm 1

Algorithm 1 Pseudocode for MT-SGD.
Require: Multiple unnormalized target densities p1:K .
Ensure: The optimal particles θ1, θ2, . . . , θM .

1: Initialize a set of particles θ1, θ2, . . . , θM ∼ q0 .
2: for t = 1 to L do
3: Form the matrix U ∈ RK×K .
4: Solve the QP minw∈∆K

wTUw to find the optimal weights w∗ ∈ ∆K .

5: Compute the optimal direction ϕ∗ (·) =
∑K
i=1w

∗
i ϕ

∗
i (·), .

6: Update θi = θi + ϵϕ∗ (θi) , i = 1, ..., K.
7: end for
8: return θ1, θ2, . . . , θM .

Related work

The most closely related work to ours is MOO-SVGD. In a nutshell, our MT-SGD
navigates the particles from one distribution to another distribution consecutively
with a theoretical guarantee of globally getting close to multiple target distributions.

MOO-SVGD MT-SGD

Step 3

Step 2

Step 1

By contrast, while MOO-SVGD also uses the MOO to update the particles, their
employed repulsive term encourages the particle diversity without any theoretical-
guaranteed principle to control the repulsive term, hence it can force the particles
to scatter on the multiple distributions

Application to Multi-Task Learning

For multi-task learning, we assume to have K tasks {Ti}Ki=1 and a training set
D = {(xi, yi1, ..., yiK)}Ni=1, where xi is a data example and yi1, ..., yiK are the labels
for the tasks. The model for each task θj =

[
α, βj

]
, j = 1, ..., K consists of the

shared part α and non-shared part βj targeting the task j. The posterior p
(
θj | D

)
for each task reads

p
(
θj | D

)
∝ p

(
D | θj

)
p
(
θj
)
∝

N∏
i=1

p
(
yij | xi, θj

)
∝

N∏
i=1

exp
{
−ℓ

(
yij, xi; θ

j
)}

= exp

{
−

N∑
i=1

ℓ
(
yij, xi; θ

j
)}

,

where ℓ is a loss function and the predictive likelihood p(yij | xi, θ
j) ∝

exp
{
−ℓ

(
yij, xi; θ

j
)}

is examined. Note that the prior p
(
θj
)

here is retained from
previous studies, which is a uniform and non-informative prior and can be treated
as a constant term in our formulation.

Experiments

We first qualitatively analyze the behavior of the proposed method on sampling from
three target distributions. Each target distribution is a mixture of two Gaussians.

We next test our method on the other low-dimensional MOO problem. In particular,
we use the two objectives ZDT3, whose non-contiguous Pareto front parts.

Our method is validated ondifferent benchmark datasets: (i) Multi-Fashion+MNIST,
(ii) Multi-MNIST, and (iii) Multi-Fashion.

Dataset Task Linear scalarization MGDA Pareto MTL MOO-SVGD MT-SGD

Multi-Fashion+MNIST
Top left 21.33 ± 0.83 19.91 ± 0.26 9.44 ± 0.65 9.47 ± 0.89 4.65 ± 0.11

Bottom right 17.76 ± 0.60 16.29 ± 1.35 4.73 ± 0.46 4.95 ± 0.49 3.17 ± 0.20

Multi-MNIST
Top left 17.37 ± 0.62 15.29 ± 0.49 5.45 ± 0.85 5.37 ± 0.51 3.28 ± 0.20

Bottom right 18.09 ± 1.11 16.87 ± 0.67 7.34 ± 1.08 6.74 ± 0.50 4.00 ± 0.19

Multi-Fashion
Top left 15.86 ± 1.20 14.48 ± 0.95 8.55 ± 0.69 5.48 ± 0.53 3.80 ± 0.38

Bottom right 15.98 ± 1.32 14.70 ± 1.63 9.01 ± 1.77 6.11 ± 0.54 4.47 ± 0.21

We performed our experiments on the CelebA dataset, which contains images
annotated with 40 binary attributes.
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As a final remark in the Multi-Fashion+Multi-MNIST experiment, we compare our
methods against baselines in terms of the required running time

0 5 10 15 20 25
Time (s/epoch)

Linear scalarization

MGDA

Pareto MTL

MOO-SVGD

MT-SGD

M
et

ho
d


